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1 Introduction

METAR is a standardized format for weather information through the Interna-

tional Civil Aviation Organization. It is one of the two most common forms of

weather data used by pilots and is recognizable by pilots throughout the world.
A typical METAR format:

METAR KGGG 1617753Z AUTO 14021G26 3/4SM+ TSRA BR BKNOO8 QOVC012CB
18/17 A2970 RMK PRESFR

This includes type of data (METAR), airport (KGGG), valid time (the 16th at
1753Z), modifier (AUTO; from an automated weather source), wind (from 140
degrees from true north at 21 knots gusts up to 26 knots), visibility (3/4 of
a statute mile), precipitation (thunderstorms, rain showers, and mist), cloud
cover (broken cloud cover at 800 feet, overcast at 1200 feet), air temperature
and dew point (18 degrees and 17 degrees Celsius), altimeter pressure (29.70 Hg
or inches of mercury), and any extra remarks (pressure falling rapidly).

Temperatures included in a METAR may differ slightly from a local area
weather report due to some differences between surface temperatures and air
temperatures, but the difference is negligible, and a METAR will provide accu-
rate weather information for the area in question. METARSs are a useful source
of continuously updated data with METARs routinely posted at least hourly
every day.

2 Data Collection

To initiate our project, we gathered METAR data specific to the College Park,
Maryland area for the purpose of temperature prediction. College Park Airport,
distinguished by the ICAO code KCGS, holds the distinction of being the world’s
oldest continuously operated airport. Initially, our plan was to procure data
through the weather.gov weather API. However, we encountered a limitation —
the API only provides historical data for up to two weeks, making it suboptimal
for our project’s needs.

In response to this limitation, we turned to the Iowa State University’s lowa
Environmental Mesonet (IES), a comprehensive archive of automated airport
weather observations globally. The IES enables the selection of specific METAR
data within a date range, commencing from the first archived METAR at a
chosen airport. For KCGS, METARs are available dating back to 1976, with
a notable gap between 1981 and 2006 due to either non-archived data or the
discontinuation of automated METAR broadcasts during that period. Our data
collection spanned from May 31, 2006, to the most recent date available.

To facilitate this data collection, we implemented a straightforward web
scraping function utilizing the beautiful soup package in Python. The IES
provides a rich array of data, encompassing air temperature, dewpoint, relative
humidity, heat index/wind chill, wind direction, wind speed, altimeter pressure
in inches, mean sea level pressure, 1-hour precipitation, visibility, wind gust,
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Figure 1: HTML METAR data.

cloud coverage, cloud height, present weather codes, ice accretion, peak wind
gust, peak wind time, snow depth, and the raw METAR.

During the feature selection process for our predictive model, we excluded
certain variables, such as visibility, peak wind gust, peak wind time, ice accre-
tion, and cloud height. These variables are pertinent to a pilot’s considerations,
involving aircraft operations and fuel levels, but lack direct relevance to atmo-
spheric conditions conducive to temperature prediction.

The chosen features extracted from METAR, data included air temperature
(°F), dewpoint temperature (°F), relative humidity (%), heat index/wind chill
(°F), wind direction, wind speed (MPH), altimeter (inches), mean sea level
pressure (mb), 1-hour precipitation (inch), cloud coverage, snow depth, and
weather codes. Each of these features was selected with specific considerations in
mind. For instance, air temperature served as our target variable for prediction,
while dewpoint represented the temperature at which air becomes saturated
with water vapor. Relative humidity, inversely proportional to air temperature,
was deemed significant for its potential role in temperature prediction.

Similarly, heat index/wind chill, reflecting the ’feel’ of the temperature, in-
corporated the interplay of windspeed and air temperature. Wind speed and
direction were considered due to their potential impact on air temperature dy-
namics. Altimeter and mean sea level pressure, measuring atmospheric pressure,
were included as pressure and temperature exhibit a proportional relationship.
Cloud coverage factored in due to its influence on temperature through precip-
itation or UV-ray reflection, potentially causing temperature fluctuations. Ad-
ditionally, 1-hour precipitation, weather codes, and snow depth were included
to explore their potential contributions to temperature prediction.

In summary, our selection of these features was grounded in the belief that
they collectively contribute to the intricate task of temperature prediction.



relh dret poli skycl wxcodes skycl_score wxcode_score

valid
2006-05-31 16:05:00 110.0
2006-05-31 1 110.0
2006-05-31 0.0
2006-05-31 0.0

2006-05-31 2 60.0

2023-12-10

2023-12-10 22: 60.6
2023-12-10 59.4
2023-12-10 23:30:00 59.7

2023-12-10 23:50:00 59.7

433997 rows x 12 columns

Figure 2: 'Df’ Data Frame .

3 Data Cleaning

Initially, we aggregated the collected data into a consolidated dataframe, de-
noted as ‘df’, comprising over 400,000 rows. Missing values within the dataset
were encoded as 'M.” These gaps primarily stemmed from non-existent data
at the time, such as instances with no precipitation, resulting in the absence
of corresponding weather codes. Notably, the most prevalent missing values
were observed in the 1-hour precipitation (p01i), cloud coverage (skyc1), and
weather code (wxcodes) columns.

Mean sea level pressure, a potentially valuable feature for temperature pre-
diction, was unavailable for the entire dataset. Given the presence of the altime-
ter column, mean sea level pressure adjusted for reporting station elevation, the
mean sea level pressure data was deemed non-essential and consequently omit-
ted from the web scraping request. Snow depth, another initially considered
feature, was also absent from the dataset and subsequently removed.

To address the remaining missing values, our strategy involved replacing
them with the column median. This choice was motivated by several fac-
tors. The altimeter column, reflecting mean sea level pressure at the reporting
site’s elevation, tends to remain relatively constant at 29.92 inches of mercury.
Therefore, imputing missing values with the column median was deemed suit-
able. For columns such as p01i, skycl, wxcodes, drct (wind direction), and
sped (wind speed), where values were absent, indicating their non-occurrence
in the atmospheric conditions, would consequently become 0 with this strategy.
Wind direction, influenced by prevailing wind currents shaped by the Coriolis
effect, exhibited minimal variation for KCGS, predominantly originating from
the North-Northwest direction.

Subsequently, for the wxcodes and skycl columns, both text-based, we de-
vised a numerical scoring system for each value. Wxcodes comprised text iden-
tifiers and standardized codes such as '"RA’ for rain or 'SN’ for snow. Similarly,
skyc1l included codes like "CLR’ for clear skies and 'OVC’ for overcast condi-



wxcode_mapping = {

'RA BR': 2,

BR':

‘M': @,

Figure 3: WX Code Meanings.

tions. A dictionary was crafted to assign a numerical score to each key, removing
plus and minus signs indicating precipitation intensity before mapping. The re-
sulting columns were then populated with medians to replace missing values in
numerical columns.

To streamline the dataset, we discarded columns such as ’station,’ ’skycl,’
and 'wxcodes’ that were deemed surplus to requirements. The 'valid’ datetime
column was renamed ’date’ for enhanced readability. Further data processing
involved grouping entries into semi-monthly periods, differentiating between the
first half (e.g., Dec 1) and the second half (e.g., Dec 16) of each month. The
data was subsequently averaged within these groups, yielding a new data frame
reflecting these averages. This approach was adopted to reduce the total number
of data points, in an effort to enhance computational efficiency.



4 Prediction Model

Moving on to the development of our temperature prediction model, it’s crucial
to acknowledge the complexity of weather prediction, which relies on intricate
formulas to simulate atmospheric conditions. The project initially faced uncer-
tainty regarding the feasibility of utilizing historical weather data for accurate
temperature predictions. Nevertheless, contemporary meteorologists employ
machine learning (ML) as an integral part of their weather analysis.

In our literature review, Fisher et al.’s paper, ” Accurate long-term air tem-
perature prediction with Machine Learning models and data reduction tech-
niques,” provided valuable insights into ML and artificial intelligence (AI) frame-
works used for long-term air temperature prediction. The paper showcased
successful applications of various algorithms, including linear regression, poly-
nomial regression, lasso, AdaBoost, decision trees, and random forest.

For our project, we opted for the lasso, AdaBoost, and SARIMAX algorithms
for temperature prediction, leveraging their proven success in climate prediction
models.

Moving forward, our feature selection process was driven by considering
predictors deemed useful for temperature prediction, and all collected columns
from the METAR, data represented these features. To refine our choices, we
calculated Pearson’s correlation coefficients between each column and temper-
ature. These coefficients, measuring linear correlation, served as a baseline for
determining the relevance of features to temperature prediction.

The analysis revealed a strong positive correlation between temperature and
dewpoint, as well as wind chill. Surprisingly, a positive correlation was found be-
tween temperature and relative humidity, contrary to the inversely proportional
relationship mentioned earlier. Additionally, a relatively strong negative corre-
lation was observed between temperature and altimeter pressure, wind speed,
wind direction, and cloud coverage. Weather codes and 1-hour precipitation
exhibited weaker correlations with temperature, likely due to limited precipi-
tation recorded in the area. Despite this, we included them in our analysis,
anticipating potential utility.

For the Lasso prediction, date features were extracted from the datetime
column, and a subset was excluded for subsequent predictions. We utilized
a standard scaler from the sklearn package to normalize input features before
model training. The model was evaluated using the mean squared error (MSE)
function, yielding an MSE of approximately 0.01. Predictions for the excluded
values were then made, with the scaler reversed to restore temperatures to
their original scale. The predicted temperatures, though slightly deviating from
the actual values, were within 80% accuracy. Challenges in scaling inversion
prompted exploration of alternative methods, acknowledging potential inaccu-
racies. Nevertheless, the predictions demonstrated reasonable success.

A similar test, maintaining the original individual data format instead of
grouping into semi-monthly periods, was conducted to assess the impact on
model accuracy. The model achieved an MSE of around 0.04, with predicted
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Figure 4: Lasso Model.

temperatures also within 80% accuracy. While informative, this test was not
included in the final notebook.

Subsequently, AdaBoost, a popular ensemble learning method, was employed
for temperature prediction. AdaBoost, short for Adaptive Boosting, is an en-
semble technique that combines the predictions of multiple weak learners to
create a robust model. In this case, the AdaBoost Regressor was imported from
the sklearn library, and the model’s performance was assessed using the Mean
Squared Error (MSE) metric, consistent with the Lasso model evaluation. The
procedural steps mirrored those of the Lasso model, with the exception that
values were not scaled this time. Notably, the MSE for AdaBoost was 0.76,
significantly higher than the 0.01 obtained for the Lasso model.

Using the same excluded dataset, AdaBoost predictions yielded values of
61.92, 56.03, 47.61, 43.8, and 43.97. Intriguingly, these predictions were no-
tably closer to the actual values, despite the higher MSE, indicating potential
strengths of the AdaBoost algorithm in capturing underlying patterns.

To explore further, the model was tested on the non-semi-monthly dataset
to assess its performance without temporal grouping. Surprisingly, the model
exhibited diminished accuracy with an elevated MSE of 16.6. All predicted
temperatures converged around 44.55.

The reasons behind the model’s underperformance with the new dataset re-
main unclear. We suspect potential temporal patterns that are discernible when
grouped into semi-monthly intervals may be less evident in the individual date
dataset. Other contributing factors might include the smaller time frame for
predictions compared to the semi-monthly format. The semi-monthly model
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Figure 5: AdaBoost Model.

predicts temperatures for October, November, and December, while the indi-
vidual date dataset focuses on 5 days in December. This test outcome was also
excluded from the final notebook.

Finally, the SARIMAX model was employed for temperature prediction.
SARIMAX, an acronym for Seasonal Autoregressive Integrated Moving Average
with Exogenous Regressor, is a robust time series forecasting model that places a
greater emphasis on the datetime column compared to the previously discussed
models. Unlike the Lasso and AdaBoost models, the semi-monthly dataset
used in earlier analyses could not be employed due to the absence of an inferred
frequency recognized by Python. Consequently, a resampling of the original
data frame ’df’ was executed to obtain a dataset with a daily frequency.

SARIMAX utilizes exogenous, or external, data to predict a time series
based on historical values, incorporating seasonality into its predictions, unlike
its ARIMA counterpart. Given our objective of leveraging past temperature
values to forecast future ones and considering the inherently seasonal nature
of weather data, SARIMAX proved advantageous. This model acknowledges
external variables, such as relative humidity, which can impact temperatures
despite the overall seasonality of weather patterns. For instance, increased hu-
midity, or moisture in the air, can elevate winter temperatures compared to
drier winter conditions.

The SARIMAX model is represented by a formula involving parameters
variables p, d, q, P, D, @, and m in our Python implementation. The effectiveness
of the model depends on the accurate selection of these parameters.

To optimize parameter selection, a systematic loop was implemented, eval-
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Figure 6: SARIMAX Parameter Loop.

uating various combinations of variables p,d, q, P, D, @, and m, calculating the
root mean squared error (RMSE) for each combination. The best parameter
combination was determined by identifying the set with the lowest RMSE. After
exploring multiple combinations, the parameters (1, 0, 0, 1, 1, 6) were selected
as the most optimal configuration, as illustrated below.

Subsequently, the SARIMAX model was instantiated, and a forecast period
of 12 days was designated. While the projected temperatures may not consis-
tently match those anticipated by local weather stations, the model exhibits
a commendable ability to capture variations in weather temperatures. This
suggests the potential for a more comprehensive and nuanced prediction.

A notable illustration of this capability is observed in the transition from a
temperature of 50 degrees on 12—16-2023 to 40 degrees on 12-17-2023. This
shift aligns reasonably closely with the forecast for the upcoming week, albeit
with a slight deviation of a day or so.

An identified issue arose in the SARIMAX model due to convergence prob-
lems, potentially stemming from non-stationary characteristics in the ‘tmpf’
column of the time series data. To address this, an Augmented Dickey-Fuller
(ADF) Test was employed to inspect the stationarity of the temperature col-
umn. The initial test yielded a p-value above 0.05, indicating non-stationarity.
To remedy this, the differencing function .diff() was applied, followed by a reeval-
uation of the ADF test, resulting in a p-value below 0.05 and confirming sta-
tionarity.

The model parameters were revisited through a parameter search loop, re-
vealing that the optimal configuration for the SARIMAX model was (0, 0, 1, 1,
0, 0, 3). The SARIMAX model was rerun using the differenced temperatures.
To facilitate visualization, the differencing was reversed using ‘.cumsum()’.

Upon inspecting the extended forecast, it became apparent that the new



CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL
Best Parameters: (1,0,0,0, 1, 1, 6)
RUNNING THE L-BFGS-B CODE

Machine precision = 2.220D-16
N= 3 M= 10

At X0 0 variables are exactly at the bounds

Atiterate 0 f= 3.30942D+00 |projg|= 9.69875D-02
/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-
packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequency information
was provided, so inferred frequency D will be used.|

self._init_dates(dates, freq)
/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-
packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: No frequ
was provided, so inferred frequency D will be used.

self._init_dates(dates, freq)

This problem is unconstrained.

Atiterate 5 f= 3.22808D+00 |projg|= 7.28709D-03
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Figure 7: Best Parameters Found



Temperature

SARIMAX Forecast w/ Differencing

80 1

60 1

40 1

201

— Actual
— Forecast

T T T T T T T T T T
2006 2008 2010 2012 2014 2016 2018 2020 2022 2024

date predicted_tmpf

2023-12-13

2023-12-14

2023-12-15

2023-12-16

2023-12-17

37.10

38.24

39.16

40.10

40.91

Date

=
o

Figure 8: SARIMAX Model w/ Differencing.

10



SARIMAX Forecast with Exogenous Variables
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Figure 9: SARIMAX Model.

predictions align more closely with historical data. However, they lack the
variance observed in the original predictions. The values now exhibit a gradual
increase and decrease without abrupt movements above or below the current
values. While this revised model may be conceptually sound, the initial forecast
appears more accurate in capturing the observed variance. Both forecast plots
were included in the notebook for comparison.

5 Website Building

To showcase our research findings, we employed the Dash framework within
Google Colab, creating an interactive web application. The application com-
prises three distinct pages, each dedicated to one of the predictive models we uti-
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lized: Lasso Regression, AdaBoost Regression, and SARIMAX Forecast. Let’s
delve into the key features of each page.

5.1 Lasso Regression Page

Upon navigating to the Lasso Regression page, users are greeted with a detailed
plot illustrating the comparison between actual and predicted temperature val-
ues. The plot includes an ideal line for reference. Additionally, a table presents
the predicted temperatures generated by the Lasso model, offering a more gran-
ular view of the forecasted data.

5.2 AdaBoost Regression Page

The AdaBoost Regression page follows a similar structure, providing a visual
representation of actual versus predicted temperature values through a scatter
plot. Accompanying the plot is a table showcasing the specific temperatures
predicted by the AdaBoost model. Despite a higher Mean Squared Error (MSE)
compared to Lasso, the model’s performance is discussed, and potential reasons
for varying accuracies are explored.

5.3 SARIMAX w/o Differencing Forecast Page

The SARIMAX w/o Differincing Forecast page introduces users to time se-
ries forecasting using the SARIMAX w/o Differencing model. A line plot cap-
tures the actual temperature values alongside the forecasted temperature. The
SARIMAX predicted temperatures are also presented in tabular form, offering
a comprehensive insight into the model’s performance.

5.4 SARIMAX w/o Differencing Forecast Page

Similarly, a SARIMAX w/ Differencing page is included. The only difference
from the previous page is the use of the differenced temperatures and forecasts.

5.5 Website Navigation

A convenient navigation bar is implemented across all pages, facilitating seam-
less transitions between Lasso Regression, AdaBoost Regression, and SARIMAX
Forecast sections. Users can easily explore the specific models of interest.

5.6 Hosting in Google Colab

To make our web application accessible within the Colab environment, we uti-
lized a script that accesses the virtual machine’s proxy URL. A strategic line
of JavaScript code opens the application in a new browser window, ensuring a
user-friendly experience.

12



Weather Analysis Dashboard
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Figure 10: Website Dashboard.

In summary, our Dash web application serves as an interactive platform to
present, analyze, and compare the outcomes of three distinct predictive models.
The combination of visual plots and tabular data enhances the user’s under-
standing of the models’ forecasting capabilities. Accessible within the Colab
environment, our web app provides a convenient means of sharing and discussing
our project outcomes.

6 Conclusion

To conclude, this project experienced both successes and challenges. Going
forward, it is crucial to investigate the issues related to the non-semi-monthly
data, as preliminary assessments indicated variations in Pearson’s correlation
coeflicients when data is kept in its individual date time format. Understanding
how data relationships differ when grouped versus ungrouped is essential.

An identified issue involved an error in the initial data cleaning code, which
failed to replace NaN values with column medians. The simple imputer from
the sklearn library was used in the Lasso and AdaBoost models to deal with
missing values at the time. Attempting to rectify the initial code negatively
impacted model performance and was kept in its unchanged form. While the
code remains unchanged for now, future improvements could involve replacing
the initial data cleaning steps with the simple imputer for a more streamlined
approach.

Moreover, exploring the SARIMAX forecast’s effectiveness over an extended
period would be insightful, especially considering the limitations encountered
when forecasting into the next year. Additionally, enhancing the AdaBoost
model by incorporating it as a booster for another classifier, such as a Random
Forest algorithm, could lead to improved predictive capabilities.
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Regarding the Dash app, while it serves its purpose, there is room for en-
hancement in terms of design and user-friendliness. Future iterations could
focus on refining the app’s aesthetics and functionality, making it more visually
appealing and intuitive for users. This project marked our initial attempt into
app development, and lessons learned could pave the way for a more polished
and sophisticated application in the future.
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